◆Artificial Intelligence in Information Security ˙人工智慧在資安攻防的角色 ˙人工智慧被駭客利用攻擊的方法 ˙人工智慧帶給資安防護的契機 ˙人工智慧資安技術研發展望 ◆Getting Started with Data Analytics in Python ˙Anaconda Python ˙Python package installing with setuptools ˙IPython shell and IPython notebook ˙Help and references
◆Part 1 : Fundamental data analytics in Python- Numpy ˙Numpy Array ˙EigenValue and EigenVector using Numpy ˙Random Number ˙One-dimentional slicing and indexing ˙Array shape ˙Stacking arrays ˙Splitting NumPy arrays ˙Numpy array attributes ˙Linear algebra with NumPy ˙Disregarding negative and extreme values ˙[Lab1] Small case practices in log data ◆Part 2: Fundamental data analytics in Python- Pandas
˙Data Frame and Series data structure ˙Querying data in pandas ˙Statistics with pandas DataFrame ˙Data aggregation ˙Concatenating, joining, and appending DataFrames ˙Handling missing values ˙Dealing with dates ˙Pivot tables ˙[Lab 2] Statistic analysis cloud audit log via Pandas ◆Part 3: Advanced Data analytics using sklearn library ˙Supervised learning ˙Unsupervised learning ˙Cross Validation ˙Model Complexity and GridSearch ˙Performance metrics ˙In depth- support vector machine ˙In depth- trees and forest ˙[Lab 3] Malware classification ◆Part 4: TensorFlow 123 ˙Quick understanding the types of deep learning ˙TensorFlow installation ˙Basic Models (linear regression, logistic regression, nearest neighbor) ˙Neural network (autoencoder, bidirectional rnn, convolutional network, multilayer perceptron, recurrent network) ˙How to analyze neural network ˙[Lab] Malware analysis using Deep Learning ◆Traceability and Monitoring ˙Traceability ˙Relationships and Dependencies ˙Approving Requirements ˙Baselining Approved Requirements ˙Monitoring Requirements Using a Traceability Matrix ˙The Requirements Life Cycle ˙Managing Changes to Requirements ◆Solution Evaluation ˙Purpose of Solution Evaluation ˙Recommended Mindset for Evaluation ˙Plan for Evaluation of the Solution ˙Determine What to Evaluate ˙When and How to Validate Solution Results ˙Evaluate Acceptance Criteria and Address Defects ˙Facilitate the Go/No-Go Decision ˙Obtain Signoff of the Solution ˙Evaluate the Long-Term Performance of the Solution ˙Solution Replacement/Phase out ◆案例與演練 ˙課程回顧與評量 ˙各單元案例實作與分組討論 (Workshop) ˙模擬試題解題 (Mock Exam) 詳細課程內容請參考以下網址:http://www.iiiedu.org.tw/ites/AIIS.htm
- 新聞稿有效日期,至2019/01/21為止
聯絡人 :張先生 聯絡電話:(02)6631-6539 電子郵件:alanchang@iii.org.tw
上一篇:【資策會】CBAP國際商業分析師認證班 (台北3/10)
下一篇:【資策會】人工智慧影像辨識與解讀設計 (台北2/14)
|