回到首頁
個人.家庭.數位化 - 數位之牆



產業動態 微軟 Azure AI 助攻 中國附醫成功開發智慧抗藥菌預測系統
經典公關 本新聞稿發佈於2022/05/31,由發布之企業承擔內容之立場與責任,與本站無關

AST.AI 抗藥性預測精準快速 解決全球重大醫療挑戰。台灣的中國醫藥大學附設醫院(中國附醫)為此與微軟合作,積極投入相關研究,在 Azure 平台上開發「AST.AI 智慧抗藥菌預測系統」,藉由 AI 機器學習分析幫助,將原本須 2-5 天才能得知的「病菌抗藥性」結果,成功縮短為 1 小時。

 
■ 發布/輪播新聞稿 新聞稿直達14萬電子報訂戶刊登新聞稿:按此
 
【2022 年 5 月 31 日,台北訊】WHO 世界衛生組織將「病菌抗藥性」列為人類健康的十大威脅,並警告 2050 年時,病菌抗藥性將成為全球最大死因,致死人數超過癌症。台灣的中國醫藥大學附設醫院(中國附醫)為此與微軟合作,積極投入相關研究,在 Azure 平台上開發「AST.AI 智慧抗藥菌預測系統」,藉由 AI 機器學習分析幫助,將原本須 2-5 天才能得知的「病菌抗藥性」結果,成功縮短為 1 小時。此項成果已獲國際醫學期刊認可,並吸引國內外臨床學研單位合作,未來將進一步透過 Azure 平台,將模型成果及分析數據與全球醫療機構分享,共同打造更完善的智慧抗藥菌系統,以解決全球最大醫療挑戰。 
 
主導開發的中國附醫智慧科技創新中心(簡稱創新中心)主任游家鑫博士指出,「AST.AI 智慧抗藥菌預測系統」藉由質譜儀判讀蛋白質量進行抗藥性預測,並透過細菌與抗生素的分子嵌合增加模型生物意義,運用微軟 Azure Machine Learning 平台與協作環境,在有限的人力物力之下,快速開發出機器學習演算法,並以大量臨床數據訓練模型的精準度。目前已與國內 4 家醫院共享模型或數據,十分期待 AST.AI 未來進一步透過與微軟的合作,與歐洲及全世界分享,饋入各國數據進行驗證,讓抗藥性預測更為精準且符合在地需求。 
 
台灣微軟首席技術與策略長暨微軟技術中心總經理陳守正表示,「智慧醫療已是全球趨勢,微軟 Azure 平台提供充份整合、高度擴充彈性的各種服務、同時具備專業認證的全面資安保障,藉此協助醫療產業發展出各式各樣的創新解決方案,待未來微軟資料中心落地後,相信能幫助更多智慧醫療的發展,共同為提升人類健康福祉而努力。」 
 
智慧抗藥菌預測 大幅縮短用藥評估時間 
「AST.AI 智慧抗藥菌預測系統」 的開發,主要基於醫學界面臨抗生素濫用的兩大挑戰,一是「病菌抗藥性」造成致死率上升,二是抗生素的龐大支出已成為各國醫學中心的沈重負擔。因此,中國附醫院長周德陽於 2021 年交付「找出解決方案來促進抗生素的合理使用」此重要任務給創新中心,著手開發機器學習模型,運用微軟 Azure AI 平台的 Machine Learning 服務打造抗藥性的預測系統。 
 
游家鑫博士指出,以往病患出現感染,在抗生素投藥之前,必須透過血液培養、抗藥性比對等過程,至少耗費 48-60 小時才能得知檢測結果,再將資訊提供給臨床醫師進行抗生素治療評估;然而統計數據顯示,每延遲 1 小時用藥,病患死亡率就會上升 7.6%。中國附醫創新中心團隊透過 Azure 平台開發雲端原生 AST.AI 系統,串接質譜儀訊號與機器學習演算法,將其運用於細菌的抗藥機制預測,並與檢測試驗室的工作流程高度整合,在短短 1 小時之內即可得知抗藥結果,輔助臨床精準投藥,不僅降低成本,也及時挽救病患健康。 
 
導入 Azure Machine Learning 微型醫療創新團隊展現巨大成果  
游家鑫博士曾於 2018 年透過科技部創新之星計畫(LEAP),前往西雅圖的微軟研究院進行訪問研究,深入了解微軟學術圖譜技術及 Azure 雲端平台在智慧醫療上的無限可能。考量到在疫情衝擊下,醫療機構系統開發必須先期投入大量資源,例如在地端建置運算能力強大的伺服器,造成額外的人力與財力負擔,更不利創新方案的快速推動。同時,訓練 AI 模型也需要大量運算資源,軟硬體資源必須妥善管理,對於小編制新創單位無法聘請專責工程師,因此在中心成立之初,游家鑫博士便決定與微軟深度合作。 
 
擅長協助產業夥伴開發創新方案的台灣微軟技術中心(Microsoft Technology Center)提出諮詢建議,中國附醫導入微軟 Azure Machine Learning,不僅輕鬆地擁有雲端自動化運算及管理維護能力,能夠充份與醫院其他部門有效協作,讓有需要的各專科醫生都能提升治療及用藥品質,同時因不需於地端投入過多資源,也因此達到成本最佳化。 
 
Azure Machine Learning 機器學習營運化最佳平台 滿足各階段各種需求 
台灣微軟技術中心技術架構師黃耀逸指出,Azure Machine Learning 是協助產業夥伴走向機器學習「營運化」的最佳平台,不論在運算資源的彈性提供、模型訓練與管理,都可省下大量時間與人力成本,讓客戶更專注本業。在 AST.AI 的案例中,雖然開發團隊規模不大,但卻具備自動化、上雲、跨部門協作等需求,因此 Azure Machine Learning 的兩大優勢恰可充份滿足: 
一、高度整合:Azure Machine Learning 與 Azure DevOps 高度整合,在 Machine Learning 的 CI/CD 應用上可無縫接軌,減少模型佈署上線的時間。 
二、進階功能完善:Azure Machine Learning 符合微軟所提出 Responsible AI 的原則與願景,提供模型的可解釋性,未來可滿足審查(Audit)等進一步需求,此外更具備與微軟其他原生服務整合的便利性。 
 
醫療產業上雲 微軟 Azure 完整資安保障 快速上線擴充便利  
中國附醫創新中心指出,醫院評估微軟 Azure 相對於其他雲端平台,有兩大更符合醫療產業需求的特色。首先是資安考量,醫療產業對資料保護等級要求極高,不亞於金融業,而 Azure 是通過醫療資安認證的雲端平台;再者是擴充便利,前期建置不需投入大量資源即可快速上線,中後期更有高度彈性,可透過雲端將智慧醫療服務推廣至其他醫院。以 AST.AI 導入外部四間醫院的驗證數據為例,只花了短短一個月,足足較傳統作法減少了三分之一的時間。 
 
微軟 Azure 全球能量 持續擴充 AST.AI 數據成果 
AST.AI 的論文成果已獲美國微生物學會 Microbiology Spectrum 期刊於今年三月發表;今年五月美國相關專利也已獲得核准。目前 AST.AI 已累積國內數十萬筆的真實世界數據,除了中國附醫,還包括衛福部豐原醫院、台大醫院雲林分院、衛福部雙和醫院、花蓮慈濟醫院等夥伴醫院的數據驗證,另有三家醫院洽談合作中。 
 
在國際上,AST.AI 也吸引瑞士巴塞爾大學醫院的交流合作,擬導入 AST.AI 的模型可解釋性技術及可視化工具,未來微軟將持續與中國附醫合作,透過 Azure 平台將 AST.AI 的模型與成果,分享到全球,匯集各國的資料來進行驗證,讓抗藥性的預測更為精準並符合在地需求。 
 
微軟 Azure 及醫療產業雲 解決疫後新挑戰 
AST.AI 的抗藥性預測是臨床分析預測領域成功運用雲端技術的最新、最具潛力案例之一。除此之外,微軟更進一步發展出功能強大的醫療產業雲,結合 Microsoft Azure、Microsoft 365、Microsoft Dynamics 365 與 Microsoft Power Platform,串連各項醫療實作場景,以雲端力量進行跨域整合,協助台灣及全球解決疫後醫療的種種全新挑戰。

- 新聞稿有效日期,至2022/07/01為止


聯絡人 :Lisa
聯絡電話:+886-2-7718-7777
電子郵件:ta2@apexpr.com.tw

上一篇:AMD助力全球最頂尖Exascale超級電腦
下一篇:SEAPRWire與EQS集團達成媒體合作



 
搜尋本站


最新科技評論

我在中國工作的日子(十四)阿里巴巴敢給股票 - 2023/07/02

我在中國工作的日子(十三)上億會員怎麼管理 - 2023/06/25

我在中國工作的日子(十二)最好的公司支付寶 - 2023/06/18

我在中國工作的日子(十一)兩個女人一個男人 - 2023/06/11

我在中國工作的日子(十)千團大戰影音帶貨 - 2023/06/04

我在中國工作的日子(九)電視購物轉型電商 - 2023/05/28

我在中國工作的日子(八)那些從台灣來的人 - 2023/05/21

我在中國工作的日子(七)嘉丰資本擦身而過 - 2023/05/14

我在中國工作的日子(六)跟阿福有關的人們 - 2023/05/07

■ 訂閱每日更新產業動態
RSS
RSS

當月產業動態

Information

 

 


個人.家庭.數位化 - 數位之牆

欲引用本站圖文,請先取得授權。本站保留一切權利 ©Copyright 2023, DigitalWall.COM. All Rights Reserved.
Question ? Please mail to service@digitalwall.com

歡迎與本站連結!